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Abstract

A new class of finitely differentiable scale free solutions to the simplest class of ordinary differential equations is

presented. Consequently, the real number set gets replaced by an extended physical set, each element of which is en-

dowed with an equivalence class of infinitesimally separated neighbours in the form of random fluctuations. We show

how a sense of time and evolution is intrinsically defined by the infinite continued fraction of the golden mean irrational

number ð
ffiffiffi
5

p
� 1Þ=2, which plays a key role in this extended SL(2,R) formalism of calculus analogous to El Naschie�s

theory of Eð1Þ spacetime manifold. Time may thereby undergo random inversions generating well defined random

scales, thus allowing a dynamical system to evolve self similarly over the set of multiple scales. The late time stochastic

fluctuations of a dynamical system enjoys the generic 1=f spectrum. A universal form of the related probability density

is also derived. We prove that the golden mean number is intrinsically random, letting all measurements in the physical

universe fundamentally uncertain. The present analysis offers an explanation of the universal occurrence of the golden

mean in diverse natural and biological processes as well as the mass spectrum of high energy particle physics.

� 2003 Elsevier Science Ltd. All rights reserved.

1. Introduction

In calculus, a variable changes by ordinary shift operations (translations). Every point in the real axis is conceived as

a structureless point. In a dynamical problem, the time evolution of a system occurs over a finite number of charac-

teristic scales as inherited from the underlying differential equation. The generation of fractal-like self similar structures

over multiple (dynamically generated) scales, either in the phase space or purely in the time sector, needs explicit

nonlinearity at the level of the governing equation. In the following, we present a new class of scale free stochastic

solutions of the simplest ordinary differential equation. A representative solution of the new class, which is exact and

finitely differentiable, defines an extension of the real number set, endowing every number with a nontrivial neigh-

bourhood of fluctuations. These fluctuations experience an intrinsic universal evolution, which, in turn, generates a

generic irreversible sense of time defined by the infinite continued fraction representation of the �golden mean� irrational
number. Consequently, time may undergo random inversions, allowing a dynamical system to explore stochastically,

new scales, usually unavailable in the ordinary dynamics. The corresponding evolution of the system would, therefore,

enjoy a generic late time stochastic fluctuations with 1=f spectrum [1]. We also obtain an exact form of the universal

probability density, recently found [2] to occur naturally in a wide class of scale free nonlinear processes in Nature.

These exact results provide a natural explanation of the universal occurrence of the golden mean in diverse natural and

biological processes.
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The relevance of the present work may also be seen in the light of the recent works [3,4] uncovering new relationships

between time and the number theory. In Ref. [3], the evidence of 1=f noise and scale free self similarity in the prime

number distribution is pointed out. In Ref. [4], Planat reported the observation of discrete time jumps in beat fre-

quencies in the context of a superheterodyne receiver. These random jumps are shown to generate 1=f noise in the

oscillator frequencies. Further, the origin of 1=f spectrum is related to the arithmetical summatory functions such as the

M€oobius and the Mangoldt functions which arise in connection with the Reimann zeta function. Sometime back,

Robinson, on the other-hand, developed [5] a theory of infinitesimals on the basis of mathematical logic, thereby giving

rise to a valid model of a nonstandard extension of the standard framework of analysis. As it turns out, the present

extension of calculus is a realization of the nonstandard analysis, in which infinitesimally small numbers are shown to

have dynamical properties. We note also that our exact results seem to provide a correct mathematical framework for

the theories of fractal spacetime being developed by several authors [6–13]. In particular, a significant part of El

Naschie�s work in quantum topology and high energy particle physics [8–13] explores the significance of the golden

mean. We note, for example, the golden mean appears as the Hausdorff dimension of the central Cantor set of El

Naschie�s Eð1Þ spacetime manifold [8]. A detailed comparison of the present results with those of Refs. [6–13] would

require separate investigations. Finally, this work is motivated by our earlier investigations on the relationship between

the intrinsic time and the nonadiabatic geometric phase in quantised general relativity and quantum mechanics [15,16].

The possibility of an inversion and the (fat) fractality of time with golden mean as the corresponding uncertainty

exponent were first noticed in Ref. [15]. Incidentally, the possibility of fractal differential equations for quantum me-

chanics seems to have been pointed out first by Ord [6] and independently later by Nottale [7] and El Naschie [8–13].

To indicate how the exact results, reported here, are obtained, starting from a heuristic definition of time inversion,

we present the exact results in Section 4. In the preceding two sections we indicate how the exact class of solutions is

derived in Section 3, using an approximate analysis, based on a local definition of time inversion, explained in Section 2.

Applications of the results are discussed in Section 5. We close the presentation with some further remarks pointing out

the future scope of this extended formalism of calculus.

2. Time inversion

Let us consider the simplest linear dynamical system given by

dx
dt

¼ ð1þ jtÞx ð1Þ

where t denotes the dimensionless time (we scale t suitably to adjust the dominant scale of evolution to t � 1) and j is a
small, slowly varying (almost constant), parameter. In the ordinary calculus, this equation has the �standard� solution
xs / expðt þ ð1=2Þjt2Þ, with no (self-similar) fluctuations, unless the equation is explicitly nonlinear, for instance,

through j ¼ jðt; x; _xx;€xx; . . .Þ. Our intention is to show that Eq. (1) can accommodate a new class of nonlinear stochastic

solutions, even for a constant j, under a simple, but general assumption that time may change by inversions as well.
Let us recall that ordinarily a change in time, in the vicinity of a given instant t0 is indicated by a pure translation

t ¼ t0 þ�tt 
 t0 þ ðt � t0Þ. In fact, the last equality is an identity (valid for all t). By an inversion, on the other hand, we
mean the following. Let t� denote times t/1 and t’1 respectively (from now on t denotes the rescaled variable

t ! ðt=t0Þ). Then close to t ¼ 1, the inversion t� ¼ 1=ð1þ ðtþ � 1ÞÞ leads to the constraint 1� t� ¼ tþ � 1. The para-

metric representation of inversely related times is obviously given by t� ¼ 1��tt and tþ ¼ 1þ�tt, 0 < �tt 
 1 (so that the

constraint reduces to an identity, valid close to t ¼ 1). With this reinterpretation, time inversion in the vicinity of t ¼ 1

assumes a form analogous to a pure translation. If translation is considered to be the most natural mode of time in-

crement, then there is no compelling reason of ignoring inversion as yet another natural mode of doing this. Conse-

quently, it seems reasonable to assume that time may change from t� to tþ not only by ordinary translation over the

period tþ � t� ¼ 2�tt, but also instantaneously by an inversion. Let us clarify the physical content of the definition further
through several remarks.

1. Note that the above definition gives a new nontrivial solution t� ¼ 1=tþ to the constraint t� þ tþ ¼ 2, in the vicinity

of t ¼ 1 over the linear solution t� ¼ 2� tþ, ordinarily thought to be the only possible solution. In view of this non-

linear possibility, the change (flow) of time could be visualised as an SL(2,R) group action, when the nontrivial SL(2,R)

action is realized only in a neighbourhood of a point, t ¼ 1, say. One may thus imagine that time flows, for example,

from t ¼ 0 to t� by translation, and then may switch over to tþ by inversion tþ ¼ 1=t�, for another period of linear flow
etc. In the next sections, we show how this second and subsequent periods of linear flows are actually realized over
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scales of the form tn ¼ mnt, n ¼ 1; 2; . . ., where m ¼ ð
ffiffiffi
5

p
� 1Þ=2 ¼ 0:618033989 . . ., is the golden mean irrational num-

ber. 1

2. The definition of time inversion has an inbuilt uncertainty. The moments t� are not well defined, except for the

fact that these be close to t ¼ 1, thus elevating �tt, and hence time itself, to the status of a random variable. Note that this

sort of uncertainty (randomness) is not allowed in the framework of linear Newtonian time. In the present SL(2,R)

framework, time may, therefore, undergo small scale random fluctuations in the neighbourhood of every instant

(�tt 
 1). Two instants t� joined by an inversion, can therefore be in a continual process of transport between each other
by randomly flipping their signs. The possibility of random flipping also indicates that there is an inherent uncertainty

in the actual determination of an instant close to t ¼ 1. In case one claims that he/she is in the moment t�, then there is a
50% chance that he/she is actually at the moment tþ. From now on, we denote by t this stochastic behaviour of time,
when the ordinary Newtonian time is denoted by g.

3. The ordinary nonrandom variable (time) g, that we are accustomed to at moderate scales should be retrievable
from the stochastic t in the mean g ¼ hti (upto a rescaling). Physically, it means that the small scale fluctuations near
every point of t cancel each other in such a way to yield the average coarse-grained time sense g to our experience. These
fluctuations would, however, become important to determine the small scale structure of time and hence of a dynamical

system. By inversion, these would also have nontrivial influences on the long time behaviour of the system. Incidentally,

we note that the formal definition of inversion is still valid for g. For a nonzero mean �tt, for instance, inversion between
g� ¼ 1� h�tti could then be implemented at a well determined instant. For a zero mean �ttðh�tti ¼ 0Þ, on the other hand, the
inversion constraint collapses to g ¼ 1. Thus allowing for a random, zero mean �tt is equivalent to probing small scale
structure of a point, t ¼ 1, where by point we mean a �physical point� which is meaningful only in the context of an

accuracy limit (level of resolution), in contrast to an ideal structureless point. As an example, let us consider a situation

when the measurement of a duration (an interval) is allowed only upto the first decimal accuracy. In that case, points

separated by a distance less than 0.05 are indistinguishable, and should be treated as an equivalence class. In this sense,

the point t ¼ 1 is an equivalent class, where the symbol �1� is only a convenient representative of the class. In the ideal
case of infinite accuracy, the class �1� has only one element in the ordinary (linear) calculus. In the presence of inversions,
it now follows that even an ideal point (in the limit of infinite accuracy) has infinite number of nontrivial members

separated by infinitesimally small, zero mean random scales. Since �ttðtÞ is a positive, monotonically increasing stochastic
variable, the nontrivial equivalence class of an ideal point has, at the least, the cardinality of continuum. In fact, it can

be higher, as is shown in Section 4. (It will be evident that zero mean is not a necessary restriction.)

4. It turns out that the concepts of inversion and stochastic time are deeply related to the (practical) limitation on the

exact measurability of a duration. Let, for instance, the moments t�, tþ belong to the equivalence class of the �physical
point� t ¼ 1. Then for any practical purpose, t� ¼ tþ ¼ 1. That means, in turn, that any measurement over a finite

period of time would fail to make any distinction between t�, tþ and 1. The associated fluctuations between t�, tþ which
remain imperceptible over a pretty long time can, however, act as potential seeds for self-similar evolutions over scales

tn ¼ mnt, which can grow slowly to interfere with each other, thereby deflecting the standard nonrandom evolution, to a

universal pattern of stochastic fluctuations (cf. Section 3).

5. It is worth comparing the present definition of a local time inversion with the usual (global) time reversal (in-

version) symmetry of an equation of the form Eq. (1). The usual time reversal symmetry means that the system xðtÞ
evolves not only forward in time from t to t þ h, h > 0, but it can also evolve backward; i.e., the state xðtÞ can be

reconstructed from the state xðt þ hÞ. The parameter t in Eq. (1) is thus �nondirected�, giving rise to the problem of time

asymmetry. As remarked already, the new class of solutions indicates an inherent irreversibility in the time sense.

3. Fractal solution

In the framework of SL(2,R) stochastic time, Eq. (1), rewritten as

dx ¼ ð1þ jtÞxdt ð2Þ

assumes the status of a stochastic differential equation. We now present a treatment of the above equation when the

variable t is assumed to act as the ordinary �coarse grained� time g, except in the vicinity of t ¼ 1 (the dominant scale of

1 The standard notation of the golden mean in the literature is /. Our symbol m in this work is motivated by the fact that the golden
mean appears here as a universal scaling factor of time. The symbol / is more often used to denote a quantum state function as well. In

Sections 4 and 5, we, however, denote the stochastic time-like character of the golden mean by /.
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evolution). Thus over the period (0,1), the system evolves along the standard evolutionary path x0 
 xs � eg (j being

small). The small scale fluctuations in the system variable x, as inherited from the fluctuations in t would remain un-
noticeable in comparison with this mean evolution. One can, however, probe these fluctuations, provided the mean

evolution x0 is removed from the actual (total) system x via the ansatz x ¼ x0x1, where x1 is the purely �fluctuating�
component satisfying the reduced equation

dx1 ¼ jtx1 dt ð3Þ

To prove the self similarity of the small scale fluctuations, and to see how these grow and influence the late time

properties of the mean evolution, we probe the neighbourhood of t ¼ 1 more and more closely, using scales tn, sepa-
rating in each step the relevant residual evolution into �mean� and �fluctuation� respectively. To see this explicitly, let us
assume, for definiteness, that the actual removal of the mean in Eq. (2) is accomplished at an instant t�/1. We note,

however, that the specification of the exact moment is physically impossible. Thus the moment t� must have an inherent
uncertainty, which we represent by an ansatz t� ¼ 1� r�gg, where, r is a discrete variate with moments hrni � rn0, hri ¼ r0,
so that ht�i ¼ g�. For the sake of clarity, one may also assume that tþ and t� belong to the physical equivalence class of
1 (cf., Remark 4), when a point is defined correct to m decimals (so that the accuracy limit is 10�m). Because of the

random inversions tþ $ t� in the time coordinate, the residual system pair x1ðt�Þ and x1ðtþÞ also undergo fluctuations
between them. However, these fluctuations would remain unobservable at least over a sufficiently long period of the

form 0 < g < 1þ a, provided r0 is sufficiently small and a � 1=ð10mr0Þ. Now utilising the golden mean partition of unity:
m2 þ m ¼ 1, m > 0, one can realise a scale changing SL(2,R) transformation

tþ ¼ 1þ r�gg � 1þ ~rrm�gg1
1� ~rr�gg1

ð4Þ

where �gg1 ¼ r0m�gg ¼ mðgþ � 1Þ 
 1, ~rr ¼ r=r0. Using Eq. (4) and the inversion constraint dt� ¼ �dtþ ¼ �rd�gg, Eq. (3) gets
transformed to

�dx1 ¼ ~rrkð1þ ~rrmT1Þx1 dT1 ð5Þ

where T1 ¼ ln g1, g1 ¼ 1þ �gg1 ¼ 1þ mðgþ � 1Þ and k ¼ j=m, when we make use of ln ð1þ ~rr�gg1Þ � ~rr�gg1 � ~rrT1. This equa-
tion, valid close to �gg ¼ 0, ðg ¼ 1Þ, and self similar to Eq. (2), describes the small scale evolution of the first generation
fluctuation x1. (One can, indeed, recast Eq. (5) exactly to the form Eq. (2) in the stochastic time variable t1 ¼ ~rrT1.) The
()) sign is a signature of inversion. Note that this also avoids the possibility of a backward flow of time at the expense of

deflecting the direction of system evolution. As time g continues to flow from gþ � 1 onwards, dragging �gg1 along with,
the small scale fluctuation x1 also gets amplified following Eq. (5) and assumes the status of the original system variable

x over time g � Oðeð1þ mÞ � mÞ, when a second generation transition to the scale T2 becomes permissible. Note that the
self similarity of Eq. (5), relative to the time variable t1, with Eq. (1) tells that T1 would act as the ordinary time for
T1 2 ð0; 1Þ for the evolution of x1. Factoring x1 ¼ e�kt1x2, one thus gets the 2nd generation replica of Eq. (1) for x2 in the
time variable T2 and hence this method of self replication over scales Tn could continue ad infinitum. An infinite string of
iterations, as above, thus leads to a new solution of Eq. (1) in the form

x / eg�~rrkðT1�T2þ���Þ ð6Þ

Note that T2 ¼ ln g2; g2 ¼ 1þ mðT1 � 1Þ ¼ 1þ mðln ð1þ mðg � 1ÞÞ � 1Þ and hence the nth generation scale Tn is related to
g by n nested natural logarithms. Consequently, the over all fluctuations in the system xf / x=x0 ¼
ððg2g4 . . .Þ=ðg1g3 . . .ÞÞ

~rrk
, incorporating influences of all scales, has the asymptotic form xf � ððln g ln ln ln g . . .Þ=

ðg ln ln g . . .ÞÞ~rrk 
 g�~rrl, as g ! 1. Here, the exponent l ¼ kð1� ðln r= ln gÞÞ, r ¼ ðln g ln ln ln g . . .Þ=ðln ln g . . .Þ, is a
slowly varying function of g. A few remarks are in order.

1. The choice of the moment t ¼ 1, around which the evolution is probed, is for the sake of convenience. For any

point t0 2 ð0; 1Þ, the analysis proceeds with the rescaling t ! t=t0, j ! t20j in Eq. (3).

2. Because of the nested logarithms, contributions from higher order scales are felt slower and slower. As stated

above the first sign of fluctuation is surfaced only if the system is allowed to evolve over a period gf � 1þ 10�mr�10 . As

an example, in a �universe� where only the first order accuracy (m ¼ 1) is allowed, the fluctuation is first noticed around

gf � 2 for a r0 � 0:1. More generally, for a r0 ¼ 10�ðmþsÞ, gf could be arbitrarily large, for a large value of s, even in the
limit m ! 1 of infinite accuracy.

3. It is natural to interprete the new solution Eq. (6), with self similar fluctuations over the mean solution x0, as a
(random) fractal solution of the equation
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dx
dt

¼ x ð7Þ

under time inversions. This is, however, in contrast to our aim which was to find such a solution for Eq. (1), so that

stochastic fluctuations would have been around the standard solution xs. In the following, we resolve this dichotomy in
a more general framework of fractal time, where the parameter k is identified with an �apriori� scale factor of time,
rather than a system variable. We also show how the correct fluctuation pattern is obtained when k acts as a true system
variable.

4. Fractal time

We have shown how a stochastic behaviour could be injected to time via inversion, while time inversion is inter-

preted as a consequence of the practical limitation of exact measurability of a duration. (Stated more precisely, the

possibility of time inversion raises the practical measurement limitation to the level of a theoretical principle.) The

stochastic nature of time already endows time with fractal-like characteristics. To investigate fractal properties in more

details, let us begin by writing an ansatz for the �physical� fractal time t as an implicit random function of the ordinary

time g : t�ðgÞ ¼ gð1� jgt�ðg�1ÞÞ. Here, j > 0 stands for an arbitrary, small but random, parameter. The nontrivial

second factor would be responsible in determining the small scale structure of the physical time in the neighbourhood of

every point g. The choice of sign � in t in the factor indicates explicitly the possibility of inversion near g ¼ 1 (see

below). Note also that t� mimics the notation of Sections 2 and 3, thereby splitting every point of g axis into an

equivalence class {t�} of infinite number of finely separated points. Since each member of the class is a function of g, it
has, at least, the cardinality of continuum (cf., Remark 3, Section 2). We show below that the actual cardinality is 2c.

As it turns out, the ansatz represents a new class of exact, stochastic solutions to the equation dx=dg ¼ 1. To verify

this, we note (suppressing the distinction temporarily) that, by symmetry, both t=g and g~tt, ~tt ¼ tðg�1Þ satisfy coupled
equations of the form a ¼ 1þ jb and b ¼ 1þ ja, hence tðgÞ=g ¼ g~ttðgÞ for all t. Noting that d~tt=dg ¼ �g�2ðd~tt=dg�1Þ, we
get dt=dg ¼ ð1þ jg~ttÞ þ gj~tt � jðd~tt=dg�1Þ, so that, ððdt=dgÞ � ðt=gÞÞ þ jððd~tt=dg�1Þ � g~ttÞ ¼ 0. It thus follows, j > 0

being arbitrary, that

g
dt
dg

¼ t ð8Þ

which is nothing but the desired equation in logarithmic variables. Note that for a nonrandom real parameter j, one
retrieves the standard solution t ¼ ð1� jÞ�1g. For a random j, which arises naturally in the context of the present

�local� definition of inversion, we, however, get a new random (fractal) solution, which matches (approximately) with the
standard linear solution only in the mean. We emphasise that the new solution is an exact solution of Eq. (8). Because

of its inherent scale-free nature, the solution must possess nontrivial fractal characteristics. Indeed, Eq. (8) tells that ln t,
and hence t=g, must be a function of ln g, so that t ¼ g/ðln gÞ. Here, /ðln gÞ ¼ cð1þ j/ðln g�1ÞÞ, and represents a

nontrivial (random fractal) solution of dx=dg ¼ 0, c being a real constant.
Let us note that a straightforward iteration of the ansatz in the form t=g ¼ 1þ j þ j2 þ � � � would be, in general,

misleading because this geometric series in j apparently hides the slow time dependence that is always present in any

finite approximants of this infinite series. We have already shown how such a slow, residual time dependence in the nth
approximant Sn ¼ 1þ j þ j2 þ � � � þ jng~tt can influence the dynamics over time g � hji�n

, because of local time in-

versions.

To explore the role of golden mean m, ab-initio in the present context, let us now reintroduce signs ��� to distinguish
the variables t�. Let tþ=g ¼ 1þ rg1t�ðg�1

1 Þ and t�=g ¼ 1� rg1tþðg�1
1 Þ, where g1 ¼ kg, j ¼ rk; k is an ordinary constant,

and r(�1) is a random variable, analogous to one in Section 3. Note that the present form is slightly general from above,

but, nevertheless, solves Eq. (8), because of its scale free nature. This scale free property now tells that the limit of

tþðgÞ=g 
 /ðgÞ as g ! g0, 0 < g0 < 1 is independent of g0. As a consequence, /ðgÞ is a universal random function,

defined in the vicinity of g ¼ 1, so that tþ ¼ g/ðgÞ, /ðgÞ ¼ 1þ r/ðg�1
1 Þ. Note that for a sufficiently small k, the variation

of /, which always remains of the order Oð1Þ, is very small. Note that tþ1ðgÞ ¼ ktþðgÞ ¼ tþðg1Þ, by definition.
Let us now recall that g1 ¼ 1 is an �ideal� point in the ordinary time axis, in contrast to the �physical point� t ¼ 1, an

equivalence class of members of the form {t�} in the geometrical axis of the physical time. Now, as g approaches 1
crossing k�1, the rescaled variable g1 crosses g1 ¼ 1, running over points such as g1� ¼ 1� r to g1þ ¼ 1þ r. An or-

dinary time inversion g1� ¼ g�1
1þ (cf., Remark 3, Section 2), now induces a random inversion in the physical time

t�ðg�1
1�Þ ! t�ðg1þÞ : rt�ðg1þÞ ¼ g21þ=tþðg1þÞ, so that r/ðg�1

1 Þ ¼ 1=/ðg1Þ. Note that the exact moment of inversion is

uncertain because of the inherent randomness in the physical time due to the r.v. r. Consequently, one obtains
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tþ=g ¼ 1þ g1=tþðg1Þ, with g1 ¼ 1þ r, r ! 0. It thus follows that tþ ¼ /g, /ðgÞ ¼ 1þ m, which is true not only for

g ! 1, but, in fact, for any g because of the universality of /.
To continue further, let us note that the above result, although proves the unique role of the golden mean number in the

framework of fractal time, also presents us with a riddle. Apparently, one would like to conclude that this solution

reproduces the standard solution t ¼ cg of Eq. (8). However, the emergence of this unique special value m is unclear in
the ordinary framework. Recall that the variables t� are intrinsically random. Further, no where in the above analysis

we have taken mean values to eliminate the underlying randomness. The only reasonable conclusion would therefore be

the following: the golden mean number / represents a universal random fractal function which is responsible for small scale
random fluctuations in the physical time t. 2

To explain the assertion in detail, we need to proceed in a number of steps, establishing a number of key results.

Let us begin by noting that the ordinary solution of Eq. (8) defines a 1–1 (the identity) mapping R ! R of the

ordinary real set. The new class of random scale free solutions now defines an extension of the ordinary real set to the

�physical� real set P , say. The extended solution space of linear ordinary differential equations now consists of solutions

which are (i) infinitely differentiable and (ii) those which are finitely differentiable, stochastic functions. We shall verify

shortly that the new implicitly defined functions are first order differentiable, with discontinuous second derivatives, at

the moments when g changes by inversions. Because of this extension, it is natural to expect that the physical set P
contains new members not available to R. To show that P indeed has nontrivial numbers, let us first distinguish a

physical number Kp from an ordinary positive real number K, where Kp ¼ K þ N , N being the neighbourhood of 1

consisting of random physical numbers (fluctuations). Thus, a physical number Kp, representing a nontrivial equiva-

lence class, is a nonsingleton subset of Rþ, the set of nonzero positive reals. Further, by definition Kp ¼ K/ðgÞ.
Let PðeRRÞ denote the power set of eRR ¼ Rþ [ ð�1; 0Þ, ePP , being the corresponding extension, and N the set of discrete

subsets in eRR. Then the cardinality of N equals, c, the cardinality of continuum. Let g : N ! ð�1; 0Þ denote a natural 1–1
correspondence. Now, there exists an injection f1 : P ðeRRÞ ! ePP , defined by f1ðAÞ ¼ gðAÞ, when A 2 N ; f1ðAÞ ¼ K, when
Eq. (8) admits infinitely differentiable solutions in A; and f1ðAÞ ¼ Kp, otherwise. Conversely, one also finds an injection

f2 : ePP ! P ðeRRÞ, defined by f2ðKÞ ¼ fKg, but f2ðKpÞ ¼ fK;Bg, where B ¼ ð0; 1Þ is the interval where Kp is defined. Hence,

by the Schroeder–Bernstien theorem [14], the cardinality of the physical set P equals 2c. Note that the mapping g
renders all possible discrete subsets of P unphysical, transferring them to ()1,0). Further, Eq. (8) admits infinitely
differentiable solutions, over a given, apriori scale denoted as g, provided the possibility of random scale dependence via

inversions is neglected. Consequently, the set R is realized in P in an approximate sense. Moreover, there exist an

uncountably more nontrivial elements in the physical set in comparison to the real set. This means, in particular, that

there exist physical numbers (in the form of fluctuations) which are infinitely smaller than any nonzero ordinary real

numbers. By inversion, one then concludes that there exist infinitely large physical numbers greater than any real

number. Clearly, all the set theoretic results, valid in R, get carried over to the physical set. In particular, the physical set
is partially ordered, when kp6Kp means k6K.

Now to construct a nontrivial infinitely small fluctuation, let us recall that a physical number is associated with an

accuracy limit. Let kp ¼ rkðg�1Þg be determined with an accuracy 10�m. Let sup½1=k� � 10ðmþsÞ. Here, [�] denotes the
greatest integer function, and the supremum is defined on a bounded interval of g. Then, as m ! 1, s large, but finite,
kp ¼ 0, in the ordinary sense, for finite g. But in the sense of a �physical limit� g1 ¼ 10�mg ! 1, m ! 1, g ! 1, one gets

an arbitrarily small random number, by allowing s to assume larger and larger values, but never exactly allowing s ¼ 1.

Because of randomness, kp is not an ordinary real number. The physical limit tells that the ideal condition of infinite
accuracy is realised only in an infinitely distant time. In other words, any measurement process over a finite period of

time can achieve only a finite degree of accuracy. We note that the physical set P has a structure analogous to the

nonstandard real number set [5]. A more detail investigation of the relationship between the two approaches will be

considered separately.

Next we show how such an infinitely small fluctuation kp can have nontrivial influence at the level of the ordinary scale,
thereby re-deriving, in an alternative way, the small scale time evolution in the golden mean m. Let us rewrite the physical
time t in the form t ¼ g/ðgÞ, /ðgÞ ¼ 1þ kp/ðg�1

1 Þ, g1 ¼ kg. Since t must be an exact solution of Eq. (8), one obtains
kpðd/=d ln g1Þ ¼ 0. It thus follows that in the ordinary scale of g : ðd/=d ln gÞ ¼ 0, and hence / is an ordinary constant

(having no evolution). However, this conclusion may not necessarily be true at the level of the smaller scale g1. In fact,
as g1 grows to order Oð1Þ, d/=d ln g1, need not vanish, since kp, though nonzero, becomes vanishingly small provided
ðd/=d ln g1Þ � Oð1Þ. To verify this, note that /ðgÞ � 1 ¼ �gg1ð/ðg�1

1 ÞÞ (/ < 1 as long as g1 < 1), �gg1 � 0, so that in the

limit of g1 ¼ 1þ �gg1 ! 1,

2 From now on, we denote by / this stochastic time-like feature of the golden mean. By the symbol m we, however, continue to refer
to the usual �nonrandom� number ð

ffiffiffi
5

p
� 1Þ=2.
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d/ðg�1
1 Þ

d ln g1
¼ /ðg�1

1 Þ ð9Þ

which is of order Oð1Þ, and one retrieves a self similar replica of Eq. (8), over the scale g1. Note that, as g1 ! 1�, /
behaves as a small scale linear time so that / � 1 � �d/. But as g1� ! g1þ, by inversion, ()) sign cancels so as to

reproduce Eq. (9). It is now easy to verify the continuity of the first derivative at g1 ¼ 1, since �ðd/ðg�1
1 Þ=d ln g�1

1 Þ ¼
ðd/ðg1ÞÞ=ðd ln g1Þ ¼ /. The continuity of the second derivative cannot, however, be maintained because of the sign dif-
ference injected by inversion.

Note that the above analysis leads us to the fact, by yet another route, that the golden mean m ¼ / � 1, must have

small scale intrinsic time evolution. To state more clearly how a time sense gets attached to m, let us note that the in-
trinsic time must flow, in the neighbourhood of gð¼ 1Þ, in the form /ðgÞ ¼ 1þ kp/ðg�1

1 Þ, till a random inversion near

g ¼ k�1 carries it to the smaller scale g1, to assume the form /ðgÞ ¼ 1þ kð/ðg1ÞÞ
�1
. As a consequence, a (linear) time

sense, self similar to the scale g is generated over the scale g1, which persists upto order g1 � k�1, preparing it for yet
another replication on the second generation scale g2 and so on, leading to an infinite continued fraction

/k ¼ 1þ ½k; k; k; . . .� representation of the intrinsic time flow, as the zeroth generation ordinary time g ! 1, exploring

longer and longer scales. Letting k ¼ 1, one gets the golden mean flow of time. Note that the intrinsic sense of time is

derived from the infinitely slow random unfolding of cascaded scales hidden in the form of an infinite continued

fraction. Among all these time-like continued fractions /k , the golden mean continued fraction is distinguished by its

slowest possible convergence (unfolding) rate. We now show that /k � 1 ! / as g ! 1. Note that after nth inversion,
g reaches the scale gn. Let n1 denote the smallest infinitely large natural number, exceeding all real numbers, in the

physical set P , so that g1 ¼ kn1g. One exhausts all possible ordinary scales by utilising all the available n1 number of

inversions so that the final replication leads to /ðg1Þ ¼ 1þ ð1=/ðg1ÞÞ, yielding m. It thus follows that although, in
general, time may flow following the steps of /k , this scale dependent flow can in fact continue at most upto a finitely

many scales (in the context of physical time). The intrinsic flow, exploring smaller and smaller scales at slower and slower

rates, as the ordinary zeroth generation scale g ! 1, would finally converge to the slowest possible golden mean flow.Note

that once the golden mean flow is reached, no further scale replication is allowed, since all the higher order scales would

be physically indistinguishable (g1þ1 ¼ g1), from the stand point of the ordinary scale g � 1. However, because of self

similarity, any scale gn could be considered as the zeroth generation scale, the process of exploring the golden mean flow

of time would remain unaltered.

We close this section with a few more remarks, highlighting a number of important features of the golden mean.

1. The golden mean time sense is intrinsic, since it is independent of an apriori time. Note that /ð/ð�ÞÞ ¼ /ð�Þ, where
ð�Þ indicates that / could be a function of any tn. In fact, the equation means / ¼ /ð/Þ, thus eliminating the Newtonian
external time g. (Recall that to avoid any confusion, we choose / to indicate the slow scale dependent (logarithmic)

variation in the golden mean, while m�1 denotes the usual constant value of it, over a well defined given scale). However,
an approximate, �coarse-grained� Newtonian sense of time is realised over a scale, when the small scale fluctuations,

because of local inversions, are ignored. In the following, we denote by /ð/Þ the set (equivalence class) of all possible
intrinsic variables of the form {/ðtnÞ}.

2. So far, we have not spelled out the form of the random variable r. A probability distribution satisfying the

constraint hrni � rn0, hri ¼ r0 can be written as follows. Let the sample space of r be frsþ10 g, s ¼ 0; 1; 2; . . . The corre-
sponding discrete probability function is defined by pðrÞ ¼ e�rm

0 ðrms0 =s!Þ, m being a positive integer. The distribution is

Poisson-like, but not exactly the same, because of the special sample space, generating the infinite set of scales. Let

r0K 1, so that rm0 
 1, for a suitably large m. Thus hrni ¼ rn0pðr0Þ, pðr0Þ ¼ er
m
0
ðrn
0
�1Þ � 1. Further, any number r0 can be

written as r0 ¼ ma, a ¼ logm r0. Thus all the free parameters in the definition of the fractal time t is determined self

consistently in terms of m. The parameter k ¼ 1, since the scale factor is included in the sample space. One thus fixes k in
Eqs. (1) and (6) as k ¼ r0.

3. The golden mean m remains constant over a scale g, but, nevertheless, enjoys intrinsic randomness. Because of the
equality m ¼ ð1� mÞ

P
m2n, m is realized as the expectation value of a r.v. r with sample space {mn} of scales, the cor-

responding probabilities being fpðrÞg ¼ fð1� mÞmng. Note that m here denotes the exact value represented as

ð
ffiffiffi
5

p
� 1Þ=2. Let us consider the sample space {Smþn} of yet another r.v. rm, for a sufficiently large m, where Sn is the nth

approximants of the above series. The corresponding probability distribution is pðrmÞ. Consequently, rm realizes higher
precision values of m with lower and lower probabilities. Clearly, m 
 rm. This proof, being purely of number theoretic
origin, tells that measurements in a physical universe are inherently uncertain, since any measurable quantity is a

multiple of m. Note that the evaluation of the exact m needs a measurement process defined over an infinite amount of
time, thus making it physically impossible. The choice of the probability distributions may, however, appear arbitrary.

In Section 5.2, we show how these discrete distributions relate naturally to a universal density function for the class of

fluctuations considered in this work.
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5. Applications

In the following applications of the fractal time, we show how the formalism yields (i) a natural resolution to the

generic 1=f signal problem [1], and (ii) the universal probability density observed in the Bramwell–Holdsworth–Pinton

(BHP) fluctuations [2].

To begin with let us first reconsider Eq. (1) in the light of fractal time t. Recalling t ¼ gð1þ r/ðg�1ÞÞ,
dt ¼ ð1þ r/Þdg, since d/=dg ¼ 0. The Eq. (7) in the �physical� time t is re-expressed in the Newtonian time as

dx
dg

¼ ð1þ r/ðg�1ÞÞx ð10Þ

An exact solution of this equation, Eq. (6), as an implicit function of g has already been obtained. An analogous form of

the solution is now written as x ¼ eðgþaðgÞÞaðgÞ ¼ r
R

gd/ðg�1Þ, when Eq. (9) is used. Note that the infinite series of scales
Tn, with alternating signs, provides an explicit representation of the intrinsic time variable /, when the system is allowed

to evolve over all the available scales in an infinite period of the ordinary time g. The exponent a thus leads to the

exponent l of Eq. (6), when the integration is performed successively over scales between two consecutive moments of

inversion. It thus follows that the method of Section 3 actually yields the fractal solutions to Eq. (7), when j is identified
with one of the scales mn. Moreover, a solution of Eq. (1) when j is treated as a system variable can be obtained as

x ¼ egþ1
2
jg2�bðgÞ, where bðgÞ ¼ r

R
ðg þ 2kg2Þd/ðg�1ÞÞ, neglecting Oðr2) corrections. Note that both the solutions indicate

almost identical late time power law fluctuations.

5.1. 1=f spectrum

To calculate the spectrum of the stochastic fluctuations, present universally in linear equations of the form Eq. (1),

we need to estimate the late time asymptotic form of the corresponding two-point correlation function

CðgÞ ¼ hxð0Þxf ðgÞi ¼ hxf ðgÞi, since xð0Þ ¼ 1. Assuming that jkj � mn (say), it follows that CðgÞ � g�l, and hence the

spectrum has the form Sðf Þ � 1=f 1�l, l being the slowly varying function of Section 3. Clearly this should be the

generic form of the spectrum for a general dynamical system of the form

dx
dt

¼ hðtÞx ð11Þ

where the time dependence in h may have nonlinear influences: hðtÞ ¼ hðt; xÞ. However, the nature of explicit nonlin-
earity in a system is expected to get reflected in the exponent l. The generic logarithmic correction in l provides sig-

nificant insights into the late time features of the dynamics, which might get revealed in a time series over a number of

different scales. One example is treated below.

5.2. Universal probability function

Recently, a universal pattern of self similar fluctuations have been reported to occur in many natural processes.

Subsequently, a generic probability density function (PDF) of the form

P ðtÞ ¼ K eat�aet ð12Þ

is shown to be respected by the underlying dynamics [2], of apparently unrelated systems. Here, t is a relevant fluc-
tuating variable. Let us note that the solution Eq. (6) denotes the universal fluctuation pattern, at least, for those

Natural processes which satisfy an equation of the form Eq. (11). We now show how the above PDF is naturally

realized for this universal fluctuation.

Let us begin by noting that the infinite alternating series of scale dependent terms in Eq. (6) gives the complete

fluctuation spectrum xf of a linear system, which is self similar over all these scales and is revealed over an infinite

period of the ordinary time g. However, the first two terms in the series are sufficient to capture the generic features of
the fluctuation xf , because the scale generating r.v. r (cf., Remark 2, Section 4) induces a higher order (stochastic) scale
dependence on each of the scales Tn, thereby inscribing a complete replica, of the total fluctuation xf over the scale T1
(say), even in a finite period of g. Further, the ()) sign between two consecutive scales T1 and T2 is a nontrivial signature of
inversion. Thus it suffices for us to consider a renormalised fluctuation of the form ~xxf / e�rðT1�T2Þðk ¼ r0Þ, for a finite g.
Accordingly, the generic PDF corresponding to ~xxf should be identical with the same for xf .
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Let, for definiteness, that the random scales r ¼ fmn�1g be distributed with probabilities pðrÞ introduced in Remark 3,
Section 4. Because of the logarithmic scale dependence T2 ¼ ln ð1þ mðT1 � 1ÞÞ, one gets ~xxf / erðT2�ð1þmÞeT2 Þ. Dropping the

higher order scale dependence introduced by the m dependent factor, we get finally ~xxf / erðT2�e
T2 Þ. Now in a practical

situation, the fluctuation ~xxf is represented in the form of a time series record over a period of time. The probability that

a randomly sampled observation ~xxfn is drawn from the scale rn, in the sample space of r, now equals the product of the

probability of selecting the scale rn and the conditional probability that the observation actually comes from the said

scale, given that the scale has been chosen already. But the conditional probability is nothing but the correlation

function CðT2Þ ¼ h~xxfnðT2Þ~xxf ð0Þi ¼ h~xxfnðT2Þi, ~xxf ð0Þ ¼ 1, ~xxfn / ernðT2�e
T2 Þ. Thus the probability of drawing a random sample

from the scale rn equals PðrnÞ / pðrnÞernðT2�e
T2 Þ. Hence the grand universal probability that the time series reveals the

whole spectrum of fluctuations over all possible scales is obtained as

Pu /
X1
0

PðrnÞ ¼ ð1� mÞ
X1
0

mneð1þmÞmnðT2�eT2 Þ ð13Þ

Clearly, apart from a multiplicative factor, which could be fixed from the normalisation condition, the zeroth order

term of this infinite series representation of the universal PDF agrees well with that in Ref. [2], which was obtained from

an approximate argument (the factor a ¼ p=2 in the exponential gets replaced here by 1þ m). The higher order terms in
the infinite series represent corrections, which are likely to give more accurate fits of the time series records for natural

processes, as noted in Ref. [2].

Now to explain the reason of the matching, we note that the factor 1þ m in Eq. (13) actually realises T2 as

T1ð
 ð1þ mÞT2Þ and T1 as g. In the case of an explicitly nonlinear system given by Eq. (11) with nonlinearity coupling

k � 1, the system experiences fluctuations at a time g � 1. The scale T1 then corresponds to the 2nd generation fluc-

tuation in a corresponding time series record. It thus follows that the zeroth order PDF would have the form eT1�e
T1 . Let

us note that the moments of the model fluctuating variate in Ref. [2] possesses the generic property hrni / rn0. However,
the corresponding PDF is obtained from a quantum field theoretic consideration of a critical magnetic model which is

based purely in the Newtonian time frame. Now, the relationship between an �ordinary� dynamical variable Q0, fol-

lowing an evolutionary equation of the form Eq. (11), but in the ordinary time, and the corresponding �physical�
variable Qp is given by Q0 / Qm

p, since in the logarithmic scale ln t ¼ ð1þ mÞ ln g. An application of this conversion rule
thus leads to

PBHP / eð1þmÞðT1�eT1 Þ ð14Þ

which completes the derivation of the BHP probability function.

To proceed further, let us now re-derive the generic PDF from an alternative method. This will reveal a subtle

relationship between the universal PDF and the set of discrete distributions we have chosen as examples. Let gn ¼ mng,
where g 2 ð0;1Þ be nonrandom, and m denote an approximate value of the golden mean. The scales gn are random,

because of the randomness in m and is assumed to follow the distribution of Remark 2, Section 4 (m ¼ 1), so that g1 is
realized with probability P1 ¼ e�mm. Since m is approximate, it will now undergo evolution in the physical set following,

for instance, the scale free representation mp ¼ m/ðg�1
1 Þ ¼ m=ð1þ /ðg�1

11 ÞÞ ¼ m=ð1þ =f1þ /ðg�1
12 ÞgÞ, etc. We may assume

that the linear sense of time generated by / at the scale of g is denoted by g itself. As g flows from g � 0 slowly, the

intrinsic evolution in m splits the scale g1 into an infinite set of tiny scales g1n ¼ mng1, each of which will further undergo
finer levels of subdivisions, and so on. The stochastic evolution of m thus fractures the scale g1 at the neighbourhood of
every point, thereby raising it to the level of a continuous r.v. with the PDF P1ðg1Þ / e�m/ðg�1

1
Þ/ðg�1

1 Þ, a gamma dis-
tribution. We note that El Naschie [8] has already used a gamma distribution to derive the Hausdorff dimension of the

fluctuating (Cantorian) spacetime as 4þ /3 ¼ 4:236067977 . . . [10]. He has also indicated how the mass spectrum of all

known elementary particles could be determined using the golden mean / [13].

All the higher order scales will similarly undergo infinitesimal fluctuations and hence finally be distributed following

the above Gamma density function, since mnp ¼ mn/ðg�1
n Þ. Note that all these /ðg�1

n Þ functions correspond to different
scale dependent realizations of the same universal function /ð/Þ in the limit of infinite time. Letting m/ ¼ e

~//, we re-

produce the universal PDF for scale free (self similar) fluctuations, P ð ~//Þ / e
~//�e ~// . But ~// is again a realisation of /ð/Þ, by

Eq. (9) and Remark 1, Section 4.

6. Concluding remarks

The extension of the real set to the physical set provides a dynamical representation of the number system, each

member of which is associated with an equivalence class of fluctuating elements separated by infinitesimally small
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scales. The fundamentally stochastic nature of the golden mean number renders accurate measurements in the physical

set impossible. Consequently, the physical universe based on the physical set would consists of intrinsic changes and

fluctuations. It is hard to imagine any fundamentally constant physical quantity in this universe. The real number set is

an incomplete realization of the physical set, when the possibility of infinitesimal changes by local inversions are ig-

nored. However, because of the new exact class of solutions, P 
 R. In the midst of all these changes and approxi-

mations, there exists, however, one symbol of perfection in the form of the golden mean equation /ð/Þ2 þ /ð/Þ ¼ 1,

being engraved fundamentally in the formalism of the SL(2,R) calculus. A more detailed, in depth analysis of this

Calculus, will be presented in a subsequent paper, where the status of well known theorems such as the Picard�s ex-
istence and uniqueness theorem will be examined. Let us only remark here that the present class of solutions are not in

contradiction with the Picard�s theorem, the scope of which gets extended in the SL(2,R) formalism. It is interesting to
note here that the golden mean also has a central role in the Eð1Þ Cantorian theory developed by El Naschie. The

present formalism together with similar theories such as Eð1Þ Cantorian fractal spacetime is very likely to initiate new

approaches in understanding the origin and dynamics of linear and nonlinear phenomena in nature at all energy scales.
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